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Abstract
In this paper we investigate two different entanglement measures in the case
of mixed states of two qubits. We prove that the negativity of a state can never
exceed its concurrence and is always larger than

√
(1 − C)2 + C2 − (1 − C),

where C is the concurrence of the state. Furthermore, we derive an explicit
expression for the states for which the upper or lower bound is satisfied. Finally
we show that similar results hold if the relative entropy of entanglement and
the entanglement of formation are compared.

PACS numbers: 03.67.−a, 03.65.Ta

The concept of negativity originates from the observation by Peres [1] that a partial transpose
of a density matrix associated with a separable state is still a valid density matrix and thus
positive (semi)definite. Subsequently, Horodecki et al [2] proved that this was a necessary and
sufficient condition for a state to be separable if the dimension of the Hilbert space does not
exceed 6. The criterion of Peres leads to a natural entanglement measure called the negativity
N, defined as

N(ρ) = max(0,−2λmin) (1)

where λmin is the smallest eigenvalue of the partial transpose of the state ρ. Recently, Vidal
and Werner proved that the negativity is an entanglement monotone and therefore a good
entanglement measure [3]. Furthermore, the concept of negativity is of importance as it leads
to upper bounds for the entanglement of distillation.

The concept of concurrence originates from the seminal work of Hill and Wootters
[4, 5] where the exact expression of the entanglement of formation of a system of two qubits
was derived. They showed that the entanglement of formation, an entropic entanglement
monotone, is a convex monotonic increasing function of the concurrence.
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Both measures have the same dimensionality and it is, therefore, natural to compare them,
as one is related to the concept of entanglement of formation and the other one to the concept
of entanglement of distillation.

We will derive the possible range of values for the negativity if the concurrence of the state
is known. First of all we prove the following conjecture by Eisert et al [8] and Życzkowski
[9]:

Theorem 1. The negativity of an entangled mixed state of two qubits can never exceed its
concurrence.

Proof. To prove this, we need the result of Wootters [5] that a state with a given concurrence
can always be decomposed as a convex sum of four pure states all having the same concurrence.
It is readily checked that the negativity of a pure state is exactly equal to its concurrence. Due
to linearity of the partial trace operation, the negativity of a mixed state is now obtained
by calculating the smallest eigenvalue of the matrix obtained by making the convex sum of
the partial transposes of the four pure states all having an equal negative eigenvalue. It is a
well-known result by Weyl that the minimal eigenvalue of the sum of matrices always exceeds
the sum of the minimal eigenvalues, which concludes the proof. �

The next step is to find the lowest possible value of the negativity for given concurrence.
To this end we need a parametrization of the manifold of states with constant concurrence. In
[11], it was shown how the concurrence changes under the application of an LQCC operation
of the type

ρ ′ = (A⊗ B)ρ(A⊗ B)†

Tr((A⊗ B)ρ(A⊗ B)†)
. (2)

The transformation rule is

C(ρ ′) = C(ρ)
|detA‖detB|

Tr((A⊗ B)ρ(A⊗ B)†)
. (3)

It was further shown that for each density matrix ρ there existA and B such that ρ ′ is Bell
diagonal. The concurrence of a Bell diagonal state is only dependent on its largest eigenvalue
λ1 [4]: C(ρBD) = 2λ1(ρBD) − 1. It is then straightforward to obtain the parametrization of the
surface of constant concurrence (and hence constant entanglement of formation): it consists
of applying all complex full rank 2 × 2 matrices A and B on all Bell diagonal states with the
given concurrence, under the constraint that

Tr

((
A†A

|det(A)| ⊗ B†B
|detB|

)
ρ

)
= 1.

It is clear that we can restrict ourselves to matrices A and B having determinant 1 (A,B ∈
SL(2, C)), as will be done in the sequel.

The extremal values of the negativity can now be obtained in two steps: first finding the
state with extremal negativity for given eigenvalues of the corresponding Bell diagonal state
by varying A and B, and then optimizing over all Bell diagonal states with equal λ1.

The first step can be achieved by differentiating the following cost function over the
manifold of A,B ∈ SL(2, C):

(A,B) = λmin
(
((A⊗ B)ρBD(A⊗ B)†)�

)
(4)

= λmin
(
(A⊗ B∗)ρ�BD(A⊗ B∗)†

)
(5)

under the constraint

Tr
(
(A⊗ B∗)ρ�BD(A⊗ B∗)†

) = 1

where the notation � is used to denote partial transposition.
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There exists a very elegant formalism for differentiating the eigenvalues of a matrix:
given the eigenvalue decomposition of a Hermitian matrixX = U�U †, it is easy to prove that
�̇ = diag(U †ẊU), where ‘diag’ means the diagonal elements of a matrix. We can readily
apply this to our Lagrange constrained problem. Indeed, the complete manifold of interest
is generated by varying A and B as Ȧ = KA and Ḃ = LB with K, L arbitrary complex
2 × 2 traceless matrices (the trace condition is necessary to keep the determinants constant).
Moreover, the minimal eigenvalue is given by Tr(diag[0; 0; 0; 1]D) where D is the diagonal
matrix containing the ordered eigenvalues of C = PDP † = (A⊗ B∗)ρ�BD(A⊗ B∗)† and P,
the eigenvectors of C. We proceed as

̇ = Tr



P †ĊP







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 − µI4

︸ ︷︷ ︸
=J (µ)







Ċ = ((K ⊗ I2) + (I2 ⊗ L))C + C((K† ⊗ I2) + (I2 ⊗ L†))

where µ is the Lagrange multiplier. An extremum is obtained if ̇ vanishes for all possible
traceless K and L. Some straightforward algebra shows that this condition is fulfilled iff
CPJ (µ)P † = P(DJ (µ))P † is Bell diagonal (up to local unitary transformations).

Next we have to distinguish two cases, namely when the Lagrange multiplier µ = 0 and
when µ 
= 0. The first case leads to the condition that the eigenvector of ρ� corresponding
to the negative eigenvalue is a Bell state. It is indeed easily checked that all density matrices
with this property have negativity equal to the concurrence, and this is clearly an extremal
case. We have therefore identified the class of states for which the negativity is equal to the
concurrence. It is interesting to note that all the pure states and all the Bell diagonal states
belong to this class.

The problem becomes much more subtle when the Lagrange multiplier does not vanish.
Using the arguments of the proof of theorem 5 in [11], it is easy to prove that the partial
transpose of an entangled state is always full rank and has at most one negative eigenvalue:
the set of equations (10)–(13) in [11] is inconsistent with the constraints λ3 � 0 andλ4 < 0.
P(DJ (µ))P † will therefore be Bell diagonal either if the eigenvectors of C are Bell states,
or possibly if DJ(µ) contains eigenvalues with a multiplicity of 2. In this last case the two
eigenvectors corresponding to the multiple eigenvalue are not uniquely defined and can be
rotated to Bell states if the two other eigenvectors were already Bell states. As the first case
is already discussed in the previous paragraph, we concentrate on the second case. Denoting
the eigenvalues of C as λ1, λ2, λ3 � 0 � λ4, the eigenvector corresponding to λ4 can be
different from a Bell state iff we choose the Lagrange multiplier such that −µλ3 = (1 − µ)λ4.
The eigenvectors corresponding to λ1 and λ2 have to be Bell states. Therefore all states for
which the eigenvectors of the partial transposes are, up to local unitary transformations, of the
form

P =




1/
√

2 1/
√

2 0 0
0 0 1 0
0 0 0 1

1/
√

2 −1/
√

2 0 0




(
I2 0
0 U2

)
(6)
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with U2, an arbitrary 2 × 2 unitary matrix will give extremal values of the negativity. The
next step is, therefore, to find the state belonging to this class with minimal negativity for
fixed concurrence or equivalently, the one with the largest concurrence for fixed negativity.

Parametrizing the unitary U as

(
a −b
b∗ a∗

)
, the class of states we are considering is

parametrized as




λ1 +λ2
2 0 0 ab(λ3 − λ4)

0 λ3|a|2 + λ4|b|2 λ1 − λ2
2 0

0 λ1 − λ2
2 λ3|b|2 + λ4|a|2 0

a∗b∗(λ3 − λ4) 0 0 λ1 +λ2
2


 .

The concurrence of this state can be calculated by finding the Cholesky decomposition of
ρ = XX† and calculating the singular values of XT (σy ⊗ σy)X. As ρ is a direct sum of two
2 × 2 matrices, this can be done exactly as

σ1 = λ1 + λ2

2
+ |ab|(λ3 − λ4) (7)

σ3 = λ1 + λ2

2
− |ab|(λ3 − λ4) (8)

σ2 =
√(
λ3|a|2 + λ4|b|2

) (
λ3|b|2 + λ4|a|2

)
+
λ1 − λ2

2
(9)

σ4 =
√(
λ3|a|2 + λ4|b|2

) (
λ3|b|2 + λ4|a|2

) − λ1 − λ2

2
. (10)

The concurrence is, therefore, given by

C = 2(λ3 − λ4)|ab| − 2
√(
λ3|a|2 + λ4|b|2

) (
λ3|b|2 + λ4|a|2

)
. (11)

The task is now reduced to finding a, b, λ1, λ2, λ3, such that C is maximized for fixed λ4.
Some long but straightforward calculations lead to the optimal solution

|a|2 = 1 − |b|2 = λ3

|λ4| (12)

λ1 = λ2 =
√
λ3|λ4| (13)

1 = λ1 + λ2 + λ3 + λ4. (14)

This solution corresponds to a state with two vanishing eigenvalues, while the remaining two
eigenvectors are a Bell state and a separable state orthogonal to it:

ρ =



C/2 0 0 C/2

0 1 − C 0 0
0 0 0 0
C/2 0 0 C/2


 . (15)

The concurrence C is then related to the negativity N = 2|λ4| by the equation

N2 + 2N(1 − C)− C2 = 0. (16)

This equation defines the lower bound we were looking for, as it relates the minimal possible
value of the negativity for given concurrence. The state for which this minimum is reached is
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Figure 1. Range of values of the negativity for given concurrence.

special in the sense that it is a maximally entangled mixed state [7], [10]; no global unitary
transformation can increase its entanglement. Moreover, it is the only mixed state that can be
brought arbitrarily close to a Bell state by doing local operations (LOCC) on one copy of the
state only; it is a quasi-distillable state [7]. We have therefore proven:

Theorem 2. The negativity N of a mixed state with given concurrence C is always smaller
than C with equality iff the eigenvector of ρ� corresponding to its negative eigenvalue is a
Bell state (up to local unitary transformations). Moreover, the negativity is always larger than√
(1 − C)2 + C2 − (1 − C), with equality iff the state is a rank 2 quasi-distillable state.

A scatter plot of the negativity versus the concurrence for all entangled states is shown in
figure 1.

A similar analysis can be performed to compare the entanglement of formation [5] and the
relative entropy of entanglement [12]. It is well known that they coincide for pure states, and
that the relative entropy of entanglement can never exceed the entanglement of formation. Due
to the logarithmic nature of these quantities however, finding the states with minimal relative
entropy of entanglement for given entanglement of formation is very hard to do analytically.
Numerical investigations however showed that again the same quasi-distillable rank 2 states
minimize the relative entropy of entanglement. It is indeed possible to show that these states
are local minima to the optimization problem. Using the results of Verstraete et al [7], this
minimal value is then given by

ER(ρ) = (C − 2) log(1 − C/2) + (1 − C) log(1 − C). (17)

A scatter plot of the range of values of the relative entropy of entanglement is given in
figure 2.

Both the relative entropy of entanglement and the negativity lead to upper bounds on the
entanglement of distillation. The strict lower bounds for these quantities, derived in this paper,
are therefore nice illustrations of the expected irreversibility of entanglement manipulations
in mixed states.



10332 F Verstraete et al

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entanglement of Formation

R
el

at
iv

e 
E

nt
ro

py
 o

f e
nt

an
gl

em
en

t

Figure 2. Range of values of the relative entropy of entanglement for given entanglement of
formation.
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